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1 Polarization Vision

1.1 Introduction

One of the fundamental properties of light is polarization. Polarization of light radiation
has been used as an important measurement tool for the study of a number of phenomena
in astronomy, optics, and, crystallography. Only recently has the measurement of polar-
ization been considered for use in imagery [1], [2], [3]. In [4] a number of research results
were presented demonstrating that the sensing of reflected polarization can directly enhance
the capabilities and/or simplify certain important Image Understanding tasks beyond what
intensity and color can accomplish alone. This was shown to be true for tasks such as di-
electric/metal discrimination in images, detection of specularities (i.e., glossy highlights),
quantitative separation of specular and diffuse reflections, and, direct identification of oc-
cluding contours (i.e., edge boundaries between object and background). Furthermore while
these were a diverse set of applications, all these methods arose from the same physical prin-
ciples governing the polarization of reflected light from both dielectric and metal surfaces.
The key new perspective that came out of this work with respect to the role of polarization
sensing in Image Understanding was that polarization being orthogonal to wavelength (i.e.,
color) and a more general physical characteristic of light than intensity can carry additional
information and therefore provide a richer description of an imaged scene. Therefore, the
use of polarization for Image Understanding is an augmentation of sensed light parameters
from a scene that can have significantly more capabilities than intensity and color alone.
“Polarization Vision” is an area that could potentially play a mainstream role in Computer
Vision.

The practical significance of the enhanced capabilities of Polarization Vision was still
hindered by the fact that commercially available video imaging cameras are geared to sense
only intensity and color. The sensing of polarization requires optical components that are not
available in existing video cameras for Computer Vision. Past results have almost always
used a monochrome or color CCD camera with a mechanically rotating linear polarizing
filter placed in front of the camera lens. Multiple images have been obtained with respect to
different orientations of the polarizing filter- at least three polarization component images
are required for a complete measurement of partial linear polarization. While producing
some good results, this design for a polarization imaging device is cumbersome both from a
practical and a conceptual standpoint. The mechanical rotation of an optical filter in front
of an imaging camera causes slight geometric shifting of the projection of the world scene
onto the focal plane, and where there are significant local intensity variations in a scene (e.g.,
edges) the shifting of these intensity variations across pixels between polarization component
images causes significant error in polarization measurement. At least as important, real-time
applications outside the laboratory are difficult using this type of design. The mechanical
rotation of a polarizing filter gives Polarization Vision the appearance of being a multiple




view modality, when in fact conceptually the measurement of polarization need not involve
multiple views any more than the measurement of color.

In [4] a high-level description was given for a Polarization Camera that would fully au-
tomatically sense polarization components of light in a passive fashion without mechanical
manipulation of external optics. This would make the enhanced capabilities of Polariza-
tion Vision accessible to a larger diversity of Image Understanding applications. The first
working prototype of a Polarization Camera was presented in [5], [6], [7] utilizing liquid crys-
tal technology. This was presented in conjunction with a visually intuitive representation
scheme for partial linear polarization images. In the 1970s biologists Bernard and Wehner [8]
conjectured that polarization vision in certain animals could be analogous to color vision in
humans. In [5], [6] a representation scheme was developed from this conjecture for measured
partial linear polarization at pixels in digital images in terms of the saturation of a color
hue. To Computer Vision researchers this was a significant step because instead of measured
polarization parameters being just a set of abstract numbers, humans can actually “see” Po-
larization Vision measured by a polarization camera as being a natural visual domain unto
itself. An overview of a number of prototype designs for Polarization Cameras are presented
in [9].

This subsection overviews significant new developments in Polarization Vision resulting
from the application of Polarization Camera Technology to a number of real practical prob-
lems for Image Understanding outdoors and underwater. The system advancements that
have made these applications possible are the low-cost modular designs of compact opti-
cal and electronic components that can be used with almost any kind of imaging device.
Utilizing our visualization scheme for polarization images, Polarization Cameras are giving
humans for the first time a comprehensive sensory view of a whole new visual domain which
is speculated to be as broad an area in both theoretical and practical significance as color
vision is an extension to intensity vision.

1.2 Brief Polarization Background

The left of Figure 1 shows the electric field distribution of partially linear polarized light
viewed head-on as the superposition of an unpolarized component consisting of an isotropic
electric field distribution, with a linear polarized component consisting of an electric field ori-
ented along a single axis. Humans only visually perceive the energy flux of this distribution
as "intensity”. What is not visually perceived are the relative magnitudes of unpolarized
and linear polarized components that constitute the light, nor the orientation of the axis of
linear polarization if there is such a non-zero component. The relative proportion of linear
polarization we will term the partial polarization varying between 0 (completely unpolarized
light) and 1 (completely linearly polarized light). Partial polarization is also known as the
degree of polarization [10]. The orientation of linear polarization we will term the phase or
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Figure 1: Hue-saturation-intensity representation scheme for partial linear polarization.
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simply the orientation of polarization. Note that the phase varies within the range 0 — 180°.
Together the parameters (i) intensity, (ii) partial polarization, and, (iii) phase, completely
determine the state of partial linear polarization. Parameters (ii) and (iil) are the sensory
augmentation beyond conventional intensity and color vision. A precise definition of polar-
ization is presented in [10].

In general polarization of light can have a fourth parameter which describes an ellip-
tically polarized light component of which linear polarization is a particular case. There
are some benefits to measuring this fourth parameter of polarization, as explained in [1] for
determination of surface orientation, and in [4] for dielectric/metal discrimination. However,
studies by Waterman {11] and other researchers have shown that almost all naturally occur-
ring light outdoors and underwater, scattered and reflected, as well as light in most indoor
environments is partially linear polarized. While we have extended the designs for Polar-
ization Cameras to measure all four polarization parameters, we have found little reason in
our applications so far to use such designs. Polarization Cameras that measure partial linear
polarization have proven to be quite sufficient.

A state of partial linear polarization can be measured using a linear polarizing filter which
resolves the electric field distribution of light along a given orientation. At a pixel in an image
the transmitted radiance of partially linear polarized light through a linear polarizing filter
varies sinusoidally with period 180° as a function of polarizer orientation. The maximum,
Iz, Of the sinusoid occurs when polarizer orientation is aligned parallel to the orientation
of the linear polarized component, and the minimum, I,,;,, occurs when polarizer orienta-
tion is aligned perpendicular to the linear polarized component. With no linear polarized
component the sinusoid is simply a horizontal line with one-half the intensity magnitude of
the unpolarized light. With no unpolarized component the minimum value of the sinusoid is
0. Since a sinusoid can be uniquely determined by three points, three transmitted radiance
measurements can be taken between 0° and 180° to determine partial linear polarization. We
have standardly taken measurements at 0°, 45°, and 90°. Representing these measurements
respectively by Iy, Is5, and, Igg, the three parameters of partial linear polarization can be
derived according to:

Ig + Igg — 2145
Igo — Io
if (Ig() < Io) [ if (-I45 < I()) f=0+90celse 0 =6— 90]

phase # = (1/2)tan™'( )+ 90, (1)

intensity = Iy -+ I, (2)

Iso — Iy
(I + Ip) cos 26

partial polarization =

In previous publications the convention has been used that the phase angle § represent
the angle at which the minimum I,,;, is observed for the sinusoid of transmitted radiance,
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relative to the reference 0°. Geometrically this makes the phase angle perpendicular to the
orientation of the linear polarized component. In this paper we add a 90° term in expression
(1) using the more intuitive convention that makes the phase angle parallel with the linear
polarized component.

Figure 1 shows a mapping of partial linear polarization into a hue-saturation-intensity
visualization scheme proposed in [5], [6]. Phase and partial polarization which are not
observed by human vision are represented respectively in terms of hue and saturation. Since
phase of polarization is in the range 0 — 180°, phase angle is multiplied by two to map into
the entire range of hue representation. An image for which the measurement of polarization
at each pixel is represented according to the scheme depicted in Figure 1 will be termed a
partial linear polarization image, or simply a polarization image. Chromaticity at a pixel in
a polarization image means that there is some presence of linear polarization as saturation
corresponds directly to partial polarization. Unpolarized light at a pixel in a polarization
image is therefore achromatic. Intensity is of course simply intensity itself.

We analyzed monochrome polarization images, meaning that the measured polarization
state at each pixel is taken over a single range of wavelengths. Of course multiple polariza-
tion images can be respectively taken over different spectral wavelength ranges adding even
more sensed information. It can be difficult to visualize a vision system that is simultane-
ously sensitive to intensity, color, and, polarization. Photometrically human vision is three
- dimensional at each spatial point- two dimensions for color (i.e., hue and saturation), and
one dimension for brightness. Adding partial linear polarization sensing would make for a
vision system which is five dimensional. It turns out that some animals, such as the Mantis
Shrimp [12], may possess such higher dimensional photometric vision systems. Images simul-
taneously visualizing intensity, color and polarization can, for instance, incorporate texture
or dithering patterns at pixels that represent states of polarization.

There are two physical principles of reflected polarization which are basic to Polarization
Vision [4], [13]. The plane of incidence at an object point viewed by a camera sensor is
determined by the surface normal at the point and the viewing direction.

e For unpolarized incident light, specular reflection (i.e., glossy reflection) has non-zero
partial polarization, except for normal and grazing 1n01dence with linear polarized
component oriented perpendicular to the plane of incidence.

e Diffuse reflection from dielectric surfaces for most viewing angles is essentially unpo-
larized, becoming significantly partially polarized at greater than 60° with respect to
the angle between the viewing direction and the surface normal. The orientation of the
linear polarized component is parallel to the plane of incidence for diffuse reflection.
For smooth dielectric surfaces this is true for any incident polarization state.




1.3 Portable Polarization Camera Sensors From Modular Com-
ponents

In [5], [6] a prototype Liquid Crystal Polarization Camera was developed for full automatic
accurate capture of polarization imagery in the laboratory under computer control. The
electro-optical switching of Twisted Nematic (TN) liquid crystals in front of a fixed linear
polarizer obviates the need for mechanically rotating the linear polarizer for obtaining po-
larization component images with an intensity video camera. When an AC signal is passed
through each of the liquid crystals, the polarization state of light passing through the crystals
is unaltered — with no voltage the linear polarized component of incident light is rotated by
a fixed amount n°, the value n determined when the TN liquid crystal is fabricated. See
Figure 2. The two TN liquid crystals used are respectively 45° and 90° twist. A timing
circuit places the switching of the liquid crystals in synchronization with camera video rate,
and in series the two liquid crystals can produce 0°, 45°, 90° and 135° twist states at which
times an image is digitized — only the first three states are used to completely measure partial
linear polarization. What used to be done by mechanical rotation of a linear polarizing filter
is now done electro-optically using liquid crystals and a fixed linear polarizing filter, which
does not produce optical distortion. The switching and grabbing of polarization component
images is placed under full electrical/computer control. The switching of the liquid crystals
in synchronization with video framerate insures that polarization components are imaged
when the liquid crystals are in a fully “relaxed” state as well as knowing which liquid crystal
state corresponds to each imaged polarization component. The original TN liquid crystals
in [5], [6], required 1/10 second (three 1/30 second video frametimes) to switch states and
then a fourth video frametime to grab the image. With twelve video frametimes to grab a
complete set of three polarization component images, polarization images were sensed at 2.5
Hz.

Current TN liquid crystals switch in less than a video frametime— now only one frame-
time is used to switch states and one frametime to grab the polarization component image.
At two video frametimes to sense each polarization component image, 15 component images
can be sensed in a second. With six video frametimes to grab a complete set of three polar-
ization component images, polarization images can now be sensed at 5 Hz (one polarization
image every 0.2 seconds). If only fields are used at half image resolution (the interlacing of a
field consisting of even numbered raster lines, and a field consisting of odd numbered raster
lines, makes up an entire frame) the speed doubles to 10Hz for the sensing of partial linear
polarization images. The design for the original prototype Liquid Crystal Polarization Cam-
era has been adapted for portable use outdoors and underwater by designing modular and
compact components that are compatible with any standard NTSC video imaging device.
The two main modular components that have been designed are:

o (I) the coupling of the liquid crystals and fixed linear polarizer to form a small optical



head that can be easily mounted on any camera lens,

e (II) the design of a compact electronic box that drives the liquid crystals in synchro-
nization with the video rate of the NTSC imaging device, as well as corresponding
polarization component images with the state of the liquid crystals when they were
imaged.

TN liquid crystals are low-power only requiring a 9-volt battery to operate the electronics
that drive them. Furthermore these liquid crystals are relatively low cost. Figure 3 shows a
high level schematic of how the optical head and electronic box are interfaced with an NTSC
video imaging device. '

A number of processing options utilizing equations (1), (2), and, (3), have been used
depending upon suitability for particular applications. When using a digitizing board along
the backplane of a host computer two possibilities are useful; (i) a single sequence of three
polarization component images are sensed, digitized and then processed to produce a single
polarization image; (ii) a sequence of polarization images can be computed on the fly using
real-time processor hardware (e.g, Datacube MV-200 can incorporate equations (1), (2),
and, (3) into look-up tables) with either a polarization image updated 5 times a second
after the completion of each sequence of 0°, 45°, 90° polarization component images, or, a
piplineing scheme in which a polarization image is updated 15 times a second processing the
most recently sensed three polarization component images each time. The 15Hz polarization
image capability of this pipelining scheme is deceptive though— each element in a scene
must remain relatively static for 1/5 second (6 video frametimes) for a complete sequence of
three polarization images to be sensed, otherwise polarization measurement will be in error.
Partial linear polarization sensing is still at 5Hz with respect to a scene in which objects are in
movement. Using a video camcorder polarization component images are stored on video tape
which can then be later digitized and processed back in the laboratory using schemes (i), or,
(ii) discussed above. Since camcorders are very portable, and a large amount of image data
can be stored on a single video tape, they provide a very convenient polarization camera
for field use. The only drawbacks to using a video camcorder is slightly less polarization
image quality due to the double process of sensing off of video tape and then digitizing, and,
Hi-8 high resolution video format is limited to 400 scanlines. Nonetheless we have obtained
excellent results using camcorders.

Figure 4 shows a portable version of a Liquid Crystal Polarization Camera using a small
HI-8 Video Camcorder. The two modular components described above can be clearly seen
here with the liquid crystal/polarizer optical head mounted on the Camcorder, and the
compact white electronic box containing the timing circuitry that synchronizes and drives
the liquid crystals, to the right.

Figure 5 shows a similar liquid crystal/linear polarizer optical head mounted on a CCD
video camera that has been encased in a waterproof housing. This was developed under the
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Figure 4: Liquid Crystal Polarization Camera
using a Video Camcorder.

o
i

Figure 6: Intensity image of beach scene
at sunrise.

Figure 5:Liquid Crystal Polarization Camera
for underwater use. sponsored by U.S. Coast
Guard.

Figure 7: Polarization image of beach
scene at sunrise.

Figure &: Intensity image of beach scene
at sunset.

Figure 10: Intensity image of river running
through wooded hills under cloudy sky.

Figure 9: Polarization image of beach
scene at sunset.

Figure 11: Polarization-based segmentation
of river (Magenta).
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Figure 12: Intensity image of grass and dirt Figure 13: Polarization-based segmentation
terrain with protruding rock. of dirt (Red) and protruding rock (Green).

Figure 14: Intensity image of camouflaged Figure 15: Polarization-based segmentation
HMMWYV partially occluded by a bush. of highly polarization reflecting camouflage
resulting in target detection (Magenta).

Figure 16: Intensity image of a HMMWV. Figure 17: Polarization image of HMMW V..
Polarization features provide additional
target recognition capability.
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Figure 18: Intensity image of scraped Figure 19: Polarization based segmentation
painted steel panel. of metal (Green) and superficial (Magenta)
scrapes.

Figure 20: Intesnity image of rusted and Figure 21:Polarization based segmentation of
scrape steel pancl. rust (Yellow) and superficial scrapes (Magenta).

Figure 22: Color image of fish underwater. Figure 23: Polarization image of fish underwater

Figure 24: Polarization image of Mantis Shrimp underwater.
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sponsorship of the U.S. Coast Guard, and is being used at the Naval Surface Warfare Center,
Annapolis, Maryland, in underwater test tanks and river basins to study automated ship
hull damage assessment. In this setup a sequence of three polarization component images
are digitized and stored on a host computer, which are then later processed.

1.4 Application Areas

The development of portable Liquid Crystal Polarization Cameras has facilitated the study
of a number of new application areas in Polarization Vision revealing potential practical
utility for Image Understanding, and, as a potentially valuable tool for the general study of
science. On-going research is shown in four of these application areas. These are just a small
subset of a number of compiled results in these areas, and are not meant to be completely
conclusive- an entire paper can be easily devoted to each application. The results presented
are meant to reveal some of the salient capabilities of Polarization Vision for real applications
which is motivating further study and the potential utility of Polarization Vision as a new
promising approach to Image Understanding. The fundamental physics-based principles
upon which the application results are based are summarized. Color in some of the following
figures are used to represent polarization information, while in other figures color is used as
a segmentation label. Figures 6 thru 13 were sensed using the camera in Figure 4, digitized
and then post processed. Figures 14 thru 17 were sensed using a liquid crystal polarization
camera mounted on top of a HMMWYV at Martin-Marietta Denver. Figures 18 thru 21
were sensed using the camera shown in Figure 5. Figures 22 thru 24 were sensed using a
waterproofed version of the camera in Figure 4.

1.4.1 Polarization in Nature and Natural Object Recognition

Figures 6 and 7 respectively show an intensity image, and, a hue-saturation-intensity repre-
sentation of the partial linear polarization image for a beach scene at sunrise, the sun is rising
far to the left out of the field of view. The partial linear polarization image reveals a number
of physical phenomena at work in nature that intensity and color vision are oblivious too.
The vast majority of significant partial polarization in this scene comes from either ocean
or sky. The laws of Rayleigh scattering of sunlight off of atmosphere dictate that skylight
is nearly unpolarized in the vicinity of the sun becoming more and more partially polarized
moving angularly away from the sun. According to Rayleigh the partial polarization from a
patch of skylight at angle o from the sun is given by [10]:

sin® o
1+cos?a’
the orientation of partial linear polarization being tangent to the circle centered at the sun




and passing through the patch of sky. There is some depolarization caused by water and
haze particles as discussed by Waterman [11]. In Figures 6 and 7 the skylight in this field of
view has « in the range 45° — 55° and is therefore significantly polarized. This scene shows
how different cloud densities effect skylight polarization, and what happens when partially
polarized skylight reflects off of water. Due to scattering of light in air the linear polarization
content of skylight is oriented almost vertically in the image shown as variations in Cyan and
Green color hue. The whiteness of the denser clouds shows that they are unpolarized, less
dense clouds have some chromaticity because they are translucent with respect to background
polarized skylight depolarizing this to some extent but also slightly altering the orientation
of partial linear polarization of skylight. Some portions of ocean reflect light from clouds,
other portions of ocean reflect light from sky. Unpolarized light from dense clouds reflects off
of water with linear polarization component oriented horizontally (Magenta) while almost
vertical orientation of linear po’ irization contained in skylight reflects off of water within the
approximate orientation range 40 — 60°, shown in Blue-Purple color hues. The maximum
partial polarization in Figure 7 is 45%.

Figures 8 and 9 respectively show an intensity image, and, a hue-saturation-intensity
representation of the partial linear polarization image of another beach scene, this scene
being at sunset. The sun is low in the sky just out of view slightly to the left of the image.
The range of « in this view is from 10° — 40° and the qualitative effect of increasing partial
polarization as a function of increasing « is clearly seen moving from left to right in Figure
9. The phase of partial polarization from ocean is oriented horizontal (hue Magenta) in the
image while the phase of partial polarization from skylight is oriented nearly vertical (hues
Cyan and Green) in the image. The horizontal phase of reflected polarization from ocean is
consistent with nearly unpolarized skylight in the vicinity of the sun specularly reflecting off
of water into the camera (first itemized principle at the end of Section 2). The maximum
partial polarization in Figure 9 is just under 40%.

Quantitative measurements taken with our polarization camera of patches of “clear”
sky show that in fact partial polarization does behave according to the Rayleigh partial
polarization formula to within 10%- partial polarization is seen to be just a little less than
predicted by the formula. The orientation of partial linear polarization has been verified to
be quite accurate to within 4+5°. Predictions about polarization of skylight and clouds have
so far been primarily theoretical, and Polarization Cameras are providing the first practical
tool with which to empirically study measured polarization distributions in images of nature.

Figure 10 shows the intensity image of a river that runs between wooded hills under
a cloudy (unpolarized) sky. Water is difficult to segment in natural scenes using intensity
and color due to its resemblance to other elements of the scene from direct mirror reflection.
Figure 11 shows the corresponding partial linear polarization image revealing that in this case
practically all partial polarization comes from visible portions of river in the scene. Strongest
partial polarization in Figure 11 is 30%. The phase of reflected polarization represented by
hues of Magenta-Red depict a horizontal phase of reflected polarization physically consistent
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with specular reflection of unpolarized skylight off of a horizontal surface (first itemized
physical principle in section 2). Since water is a fluid and therefore oriented parallel to gravity
this provides a physically-based methodology for segmenting water in a natural scene.

Figure 12 shows grassy terrain with intermixed patches of dirt, and rocks which are either
strewn about or are protruding out from dirt. There is a white concrete path on the left side,
and trees in the background underneath a cloudy sky. Exposed dirt, and rock, strongly po-
larize light upon reflection as opposed to grass which typically has little partial polarization.
Figure 13 shows a segmentation of dirt and possible rock using partial polarization and phase
of polarization information. Pixels with at least 5% partial polarization are either labeled
Red or Bright White. (The criterion 5% represents “significant” partial polarization with
a high confidence that the measured intensity variations between polarization components
are not due to camera noise.) The phase of polarization for Red labeled pixels is within the
range of +20° with respect to horizontal, representing primarily level dirt patches. Bright
White labeled pixels in Figure 13 have phase of polarization significantly deviant from hori-
zontal (i.e., outside the range +20°) implying a polarizing surface that is tilted and therefore
most probably rock. Because of the first itemized physical principle described at the end of
Section 2, phase of polarization from specular reflection directly reveals the orientation of
the projected surface normal onto the image plane (i.e., the surface normal is contained in
the plane of incidence for smooth objects). Of course there could be level portions of rock
within the Red labeled pixels, but.rock protrusions must eventually have a significant tilt in
some parts. The Bright White pixels in Figure 13 do truly reveal many areas where there is
protruding rock or small freestanding rocks, including a significantly sized rock protrusion
near the lower right corner of this image. This is important information for determining
traversability for autonomous land vehicles.

1.4.2 Automatic Target Detection And Recognition

At the Lockheed-Martin, Denver facility a liquid crystal polarization camera has been in-
stalled atop one of the Semiautonomous Surrogate Vehicles (SSV) which is a HMMWV
capable of traversing almost any kind of rugged terrain. The goal of the study is to create an
empirical polarization image database of various Army vehicles in various poses for different
viewer-solar illumination geometries. From the augmented polarization feature information
contained in such a database, the study is examining how this aids both enhanced detection

and enhanced recognition capabilities.

Figure 14 shows an intensity image of a camouflaged HMMWYV partly occluded by a
bush. The HMMWYV is barely detectable in this image even to human vision. While the
color and texture appearance of the Army surplus camouflage net concealing the HMMWV
resembles that of the bush and background terrain, the actual material from which this net
is constructed can be distinguished by its high degree of polarization reflectivity as shown

10



in Figure 15 with color label Magenta (i.e., segmentation obtained by thresholding above
30% partial polarization). This is one demonstration of enhanced target detection capability
using polarization vision.

Figures 16 and 17 both show a HMMWYV vehicle viewed about 45 degrees from a frontal
view against a background of prairie grass (sun is oriented directly in front of the vehicle
at about a 45 degree incident slant). Figure 16 is an intensity image, and Figure 17 is a

- polarization image of the same scene. Figure 17 shows a variety of polarization signatures

occurring for the HMMWYV, directly related to both material composition of parts of the ve-
hicle, and orientation of these parts of the vehicle. The anti-ballistic glass on the HMMWV
(as well as on other military vehicles) has particularly salient polarization properties with
respect to light passing through the glass, and, light specularly reflecting off the glass. The
portions of anti-ballistic glass at the left of the vehicle in Figure 17 shows initially unpo-
larized light from the prairie grass being polarized as it passes through the glass. Because
the anti-ballistic glass is non-uniformly birefringent across the glass, different orientations of
partial linear polarization produce a rainbow color pattern of lines using color visualization.
Specular reflection from the anti-ballistic glass windows on the right of the HMMWYV pro-
duce significant partial polarization, phase of this polarization (seen in blue) related to the
orientation of the glass. Cyan and green color hues at the front of the HMMWYV vehicle are
primarily from rubber and other dielectric material comprising the tires, front fender, and,
the radiator grill. In Figure 17 painted surfaces with surface normal oriented significantly
away from the midway direction between the viewing and solar illumination directions have
relatively insignificant partial polarization. Note that the painted frames around the front
windshields of the HMMWYV with surface normal oriented not too far from midway between
the viewing and solar illumination directions, have significant partial polarization. Another
salient polarization signature comes from the parabolic reflectors of the headlights producing
a circular rainbow in color visualization which is visible even with few pixels making up the
headlights. (The color near the back right wheel in Figure 17 is due to grass swaying in the
wind and is not a real polarization effect.) :

1.4.3 Automated Assessment of Damage to Ship Hulls

A very important task for the U.S. Coast Guard is the rapid assessment of damage to a ship
that has run aground (e.g., the Exxon Valdez) to evaluate how to minimize further damage
to the ship and to the surrounding environment. Another important task is the thorough
inspection of the hulls of ships in dock for routine maintenance, identifying damage such as
from scrapes and corrosion requiring repair. Currently the U.S. Coast Guard uses frogmen
divers to inspect portions of ship hulls underwater, a task that can be very dangerous as well
as having limited inspection access. Under consideration is the development of an underwater
Remote Operated Vehicle (ROV) using sensors to automatically gather data from the ship’s
hull to assess damage. Under sponsorship of the U.S. Coast Guard, one of the sensors
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currently being evaluated for use on such an ROV is a Liquid Crystal Polarization Camera
because of its enhanced ability to detect exposed metal, and rust.

Figures 18 thru 21 show applications to Ship Hull Damage Assessment using the Polar-
ization Camera in Figure 5. The intensity images in Figures 18 and 20 are of a steel panel
that has been painted with a white coat of diffuse paint, and then an orange coat of diffuse
paint. This application of Polarization Vision exploits how materials depolarize incident
linear polarized light upon reflection. A polarization model predicting reflected polarization
from materials as a function of any incident polarization state of light is presented in [14].
The ROV would provide its own illumination, in this case with a linear polarizer mounted
on a light source. In Figures 18 thru 21 the surface normal of the steel panel in each case is
parallel to the optic axis of the camera, and the illuminator is oriented parallel to viewing.
Incident linear polarized light is oriented parallel in the images, this orientation really not
mattering due to normal incidence of light.

In Figure 18 scrape damage has occurred on the panel, some scrapes only exposing the
first layer of white paint, other scrapes penetrating all the way down to the steel metal. From
the intensity image in Figure 18 it is difficult to tell which scrapes reveal only white paint
and where bare metal is exposed. Reflected intensity and color look the same from these two
types of damage. Diffuse reflection from paint will significantly depolarize incident linear
polarized light, while linear polarization reflected from exposed metal will remain almost
completely linearly polarized, especially at normal incidence. Reflected polarization from
metal has partial polarization of nearly 1.0, while partial polarization from bright white
paint is below 0.1. Diffuse reflection from orange paint has a partial polarization of about
0.3 . Hence, using partial polarization, scrape damage can be robustly distinguished. In
Figure 19 Magenta superimposed label depicts scrape damage down to white paint layer,
Green superimposed label depicts scrape damage down to steel metal. It is very important
to identify where metal has been exposed from damage because of rust and corrosion that
will soon occur. Color analysis cannot distinguish white paint from exposed metal under
most conditions since they reflect the same color of light from the illuminator.

Figure 20 shows another part of the panel where scrape damage has occurred some of
this exposing steel metal which has subsequently rusted. A good portion of this rust has
leaked out over undamaged portions of the panel, but this is hard to automatically tell from
intensity or color. Note that the intensity of rust at the top of Figure 20 is the same intensity
as that of scrapes downto the white painted layer so that intensity properties are not enough
to distinguish phenomena in this image. Also rust has the same color as the standard orange
painted surface of the steel panel. Rust as it turns out has a significantly higher specular
albedo than most diffuse paints, and as a result does not depolarize linearly polarized light
nearly as much. In Figure 20 rusted portions of the panel have partial polarization 0.7-
0.8 which readily distinguishes it from undamaged portions and scrape damage down to
the first paint layer. In Figure 21 Yellow superimposed label depicts rust and Magenta
superimposed label depicts scrape damage down to white paint layer. Rusted metal can
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also be distinguished from recently exposed bare (i.e., unrusted) metal as rust does slightly
depolarize incident linearly polarized light.

1.4.4 Marine Biology

It has been discovered over the past two decades that a number of underwater marine
animals, including fish and shrimp, have significant Polarization Vision [15], [12], [16], yet the
behavioral significance of this visual sensory modality remains a mystery. The Liquid Crystal
Polarization Camera, is providing the first comprehensive look of what the underwater world
looks like in the domain of Polarization Vision, giving important insight into how many
underwater animals may “see.” Marine Biologists at University of Maryland- Baltimore
County are studying underwater polarization vision using Polarization Camera Technology
developed under ARPA funding.

Upon Snell refraction into ocean water sunlight becomes slightly polarized, but just as
with polarization of skylight most polarization of light in ocean water arises from scattering
[11]. In the case of ocean water the scatterers are suspended particles ranging from minerals
to microscopic organisms resulting in partial linear polarization which is oriented primarily
horizontal with respect to the ocean surface and having partial polarization up to as much
as 50 — 60% depending upon the density and types of suspended scatterers. Most marine
animals underwater appear to reflect unpolarized light. To a biological or artificial sensor
having Polarization Vision this can provide an advantage with respect to enhanced contrast of
the unpolarized object against the significantly polarized background of seawater. Intensity
and color vision become blurred the further objects are away from the viewer.

Figure 22 shows an example of a color image of fish underwater, their outlines hard to
discern due to the fact that they reflect back the same color of seawater, and that the seawater
is a bit “murky” from suspended particles. Figure 23 shows a partial linear polarization image
of the same scene. The reddish color hue of seawater showing nearly horizontally oriented
partial linear polarization while the fish themselves are almost completely achromatic. This
illustrates how polarization vision may be used for contrast enhancement in biological vision
systems, which may be exploited for enhanced underwater automatic target detection and
recognition in certain cases. Note how the two small fish in Figure 22 (one near the top, and
another to the right in the image) are almost completely invisible, while in the polarization
in Figure 23 they are more apparent. The other fish have enhanced contrast as well. Apart
from Image Understanding applications, a polarization camera can enhance human vision
underwater.

Polarization cameras are revealing that some portions of certain marine animals reflect
polarized light, which may be important to explaining some behavioral characteristics of
these animals. Figure 24 shows a hue-saturation-intensity representation of a partial linear
polarization image of a Mantis Shrimp (lying upside-down). Of interest are the polarizing
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properties of the frontal antennal scales at the right of this image- in the partial linear
polarization image one scale appears in color hue purple, the other scale appears in color
hue yellow indicating almost a 90° difference in orientation of polarization between the two
scales. Before such polarization images taken with a Polarization Camera this potentially
important characteristic was not known. The origin of polarization is not from specular or
diffuse reflection—it turns out that these antennal scales consist of organic micropolarizers
that are built into the structure of the animal itself! The Mantis Shrimp which possesses
polarization vision can vary this polarization orientation difference by moving its frontal
scales and one conjecture is that this can possibly be used as a method of communication
or identification. Other significant polarization effects are being noticed with starfish, and
lionfish which may also have similar polarizing microstructures. Polarization cameras may
reveal a potentially whole new area in Marine Biology.

1.5 Conclusions and Future Directions For Polarization Vision

Polarization Vision is a new sensory modality for image understanding that can significantly
augment the capabilities of computer vision systems, as well as expand the horizons of
human visua) awareness. This is becoming more evident as Polarization Camera Technology
matures and becomes readily available to a diverse group of researchers for use outdoors
and underwater. A broad overview of recent results was presented over a diverse set of
applications where either basic low-level processing, or, a natural visualization of polarization
data revealed important scene information that was not as evident from intensity or color.

It is felt that Polarization Vision has not yet nearly reached its full role in Computer
Vision. The full application potential of Polarization Vision will be revealed as there is
wider use of Polarization Cameras in various research science areas. While Liquid Crystal
Polarization Cameras are proving to be quite a practical tool for studying Polarization Vision
on their own, developments are already underway for the next generation of polarization
cameras utilizing more self-contained technology that will eventually produce very high-
resolution polarization images at up to 1000 images a second.

2 Other Research Efforts

2.1 Diffuse Reﬂectidn Model

One of the most common assumptions for recovering object features in computer vision and
rendering objects in computer graphics is that diffuse reflection from materials is Lamber-
tian. A limitation of this work is that there is no account for the behavior of diffuse reflection
in the limit as rough surfaces become mildly rough or smooth- an important and large class
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of surfaces in practice. This paper shows that there is significant deviation from Lamber-
tian behavior in diffuse reflection from smooth surfaces not predicted by existing reflectance
models, having an important bearing on any computer vision technique that may utilize
reflectance models including shape-from-shading and binocular stereo. In particular, con-
trary to prediction by Lambert’s Law, diffuse reflection from smooth surfaces is significantly
viewpoint dependent, and there are prominent diffuse reflection maxima effects occurring on
objects when incident point source illumination is greater than 50° relative to viewing in-
cluding the range from 90° to 180° where the light source is behind the object with respect to
viewing. We present here a diffuse reflectance model, derived from first physical principles,
that accurately predicts diffuse reflection from smooth inhomogeneous dielectric surfaces as a
function of both viewing angle, and, angle of incidence. Utilizing results of radiative transfer
theory for subsurface multiple scattering this new model precisely accounts for how incident
light and the distribution of subsurface scattered light is influenced by Fresnel attenuation
and Snell refraction at a smooth air-dielectric surface boundary. A number of experimental
results have verified the proposed diffuse reflectance model.

A prevalent class of materials encountered both in common experience and in computer
vision/robotics environments are inhomogeneous dielectrics which include plastics, ceramics,
and, rubber. In computer vision a widely used assumption about diffuse reflection from
materials is Lambert’s law [17], namely the expression:

le cos Ydw
™

where p is termed the diffuse albedo in the range [0, 1.0]. This reflectance model is typically
instantiated into the implementation of a large number of algorithms such as shape-from-
shading [18] and photometric-based binocular stereo [19], [20]. It is therefore important for
researchers in the computer vision community who utilize assumptions about diffuse reflec-
tion to be aware of the conditions under which there is significant deviation from Lambert’s
law.

Almost all diffuse reflection from inhomogeneous dielectrics physically arises from subsur-
face multiple scattering of light caused by subsurface inhomogeneities in index of refraction.
In this paper we model inhomogeneous dielectric material as a collection of scatterers con-
tained in a uniform dielectric medium with index of refraction different from that of air. We
derive an expression for diffuse reflected radiance resulting from the process of incident light
refracting into the dielectric medium across a smooth surface boundary, producing a sub-
surface diffuse intensity distribution from multiple internal scattering, and then refraction of
this subsurface diffuse intensity distribution back out into air. We also account for the infi-
nite progression of internal specular reflection at the air-dielectric boundary and sub-surface
scattering. A common property of diffuse reflection from smooth inhomogeneous dielectric
surfaces is that such reflection is azimuth independent with respect to viewing about the
surface normal, regardless of the fixed direction of incident light. We have formally derived
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and empirically verified that for smooth inhomogeneous dielectric surfaces that exhibit such
azimuth symmetric diffuse reflection, if light is incident with radiance, L, at incidence angle,
1, through a small solid angle, dw, then

oL % (1 — F(,n)) x cost) x (1 — F(sin‘l(SIZ(b), 1/n)) dw (4)
describes the reflected radiance into viewing angle, ¢, (i.e., angle between viewing and the
surface normal, also known as emittance angle) [21], [22]. The terms F'(, ) refer to the Fresnel
reflection coefficients [23], n, is the index of refraction of the dielectric medium, and, g, is the
total diffuse albedo. We showed that the total diffuse albedo, g, is directly related to both the
single scattering albedo describing the proportion of energy reradiated upon each subsurface
single scattering, and, the index of refraction n. This current paper also presents a much
more comprehensive set of various results demonstrating non-Lambertian diffuse reflection
effects from smooth surfaces explained by expression 4.

Particularly useful to object feature extraction in computer vision, our expression 4 for
diffuse reflection allows precise characterization of the conditions under which the Lambertian
model breaks down for inhomogeneous dielectrics and where our more accurate model should
be used. We show that Lambert’s law is valid for smooth dielectrics to within 5% only as
long as both angle of incidence, ¥, and viewing angle, ¢, are simultaneously less than 50°.
This means that for applications in computer vision there are a large number of situations in
which Lambert’s law is significantly in error— near the occluding contour of objects under any
illumination condition; for illuminations incident at greater than 50° relative to viewing there
will be significant errors both near the occluding contour and over a large portion of object
area bounded on one side by the shadow boundary with respect to illumination; for multiple
images of a smooth dielectric object there will be significant viewpoint dependence of diffuse
reflection for most object-viewpoint situations. Existing diffuse reflectance models do not
account for these errors. In addition to experimentally verifying the viewpoint dependence
of diffuse reflection, we show how the diffuse reflection maximum occurring between an
occluding contour and the shadow boundary for a smooth dielectric illuminated by a point
light source is accurately predicted because of this viewpoint dependence. For illumination
incident at 90° and greater relative to viewing, a diffuse reflection maximum is not even
predicted by existing models having dependence only on angle of incidence, when in fact this
maximum is very prominent. Furthermore, diffuse reflection is empirically observed to be
very small in the immediate vicinity of an occluding contour for allillumination conditions, an
observation that is not supported by existing models, and yet accounted for by expression 4.

2.2 Relative Strength of Diffuse and Specular Reflection

An important feature of our diffuse reflectance model is that it predicts the surface diffuse
albedo for dielectrics purely in terms of physical parameters. Inhomogeneous dielectric sur-
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faces exhibit both diffuse and specular reflection components. Previously, combined diffuse
and specular reflection has been modeled as a sum of scaled diffuse and specular terms, with
the scaling factors (i.e., diffuse albedo and specular albedo) determined from experimental
fitting for each particular surface. We propose the following combined reflectance model for
diffuse and specular reflected radiance from smooth surfaces [24]:

Lo[l — Fw,n)] cos[1 - F(sin—l(ig—‘*i), 1 /n)] dw

+ LF(,n)8( — ¢)5(60 + 180 — 6), (5)

for small incident solid angle, dw, at incidence angle ¢, incident azimuth angle 6, emittance
angle ¢ and emitted azimuth angle 6.

The combined diffuse and specular reflectance model, expression 17 can be used to for-
mally answer the question: How bright is a specularity ? Taking the ratio of the strengths
of the specular to diffuse reflection components of expression 5:

Fon) o
o[1 — F(i,n)] costp [1 — F(sin™!(222),1/n)] dw ’

which is independent of uniform incident radiance, L. Since F(z,n) and F(x,1/n) are
monotonically increasing with respect to increasing x it should be clear that diffuse reflection
is at a maximum when 1) = 0°, ¢ = 0° and specular reflection is at a minimum when 9 = 0°.
Therefore, the ratio expression 6 is a minimum when viewing-illumination geometry is at
normal incidence and viewing. The following ratio constitutes a physical lower bound on the
ratio of specular to diffuse reflected radiance:

F(0°,n) (7

o[l — F(0°,n)][1 — F(0°,1/n)] dw )

The total diffuse albedo, p, is largest for conservative scattering when the single scattering

albedo p = 1.0. Using expression 16 to compute g at p = 1.0, the physical lower bound

expressed by 7 for the ratio of specular to diffuse reflected radiance evaluated for different
indices of refraction is (dw in steradians):

0.0838 0.211 0.370
=14 =17 — =2.0) —.
(n ) =, ) - ) o
These expressions represent physical lower bounds below which it is not physically possi-
ble to have brightness contrast between a specularity and surrounding diffuse reflection on a
smooth dielectric surface. Since practically all dielectrics have n > 1.4, this particular lower
bound can serve as a very conservative general formula for ruling out specularities in a scene.
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2.3 3-D Stereo

We have developed a novel robust methodology for corresponding a dense set of points on
an object surface from photometric values, for 3-D stereo computation of depth [25]. The
methodology utilizes multiple stereo pairs of images, each stereo pair taken of exactly the
same scene but under different illumination. With just 2 stereo pairs of images taken respec-
tively for 2 different illumination conditions, a stereo pair of ratio images can be produced;
one for the ratio of left images, and one for the ratio of right images. We demonstrate how
the photometric ratios composing these images can be used for accurate correspondence of
object points. Object points having the same photometric ratio with respect to 2 differ-
ent illumination conditions comprise a well-defined equivalence class of physical constraints
defined by local surface orientation relative to illumination conditions. We formally show
that for diffuse reflection the photometric ratio is invariant to varying camera characteristics,
surface albedo, and viewpoint and that therefore the same photometric ratio in both images
of a stereo pair implies the same equivalence class of physical constraints. Corresponding
photometric ratios along epipolar lines in a stereo pair of images under different illumina-
tion conditions is therefore a robust correspondence of equivalent physical constraints, and
determination of depth from stereo can be performed without explicitly knowing what these
physical constraints being corresponded actually are. While illumination planning is required
our photometric-based stereo methodology does not require knowledge of illumination con-
ditions in the actual computation of 3-D depth, and is applicable to perspective views. This
technique extends stereo determination of 3-D depth to smooth featureless surfaces without
the use of precisely calibrated lighting. We demonstrate experimental depth maps from a
dense set of points on smooth objects of known ground truth shape, determined to within
1% depth accuracy.

To describe the problefnatic issues of comparing image intensities between a stereo pair
of cameras we need to understand about the image formation process and the nature of
reflection from objects. We describe the formation of image intensity values beginning with
the familiar relation from Horn and Sjoberg [26]:

E = L.(r/4)(D/i)*cos*a, (8)

relating image irradiance, E, to reflected radiance, L,. The lens diameter, D, image distance,
i, and light angle, o, incident on the camera lens. Equation 8 assumes ideal pinhole optics.
The effective diameter, D, of a lens can be controlled with an aperture iris the size of which
is measured on an F-stop scale. Image irradiance is very sensitive to F-stop. While a stereo
pair of cameras can use identical model lenses at exactly the same F-stop setting, the effective
lens diameters can still be slightly different. The focal lengths as well can be slightly different
and by the classical thin lens law this will influence the image distance, ¢, in turn effecting
the image irradiance. Even in the ideal case where focal lengths are precisely equal, the
image distance, i, can be slightly different for a stereo pair of images even though the images
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“appear” equivalently in focus when in fact they are not precisely in focus. On top of all
this is the dependence of image irradiance in perspective images on pixel location relative to
the optical center of the image plane. The farther a pixel is radially away from the optical
center, the larger is the light incident angle, o, which strongly effects image irradiance. Image
irradiances arising from the same object point appear in different parts of a stereo pair of
images making them difficult to compare.

Equation 8 only takes into account the optics involved in image formation. Image irradi-
ance is converted into pizel gray value using electronics. In general the conversion of image
irradiance, F, into pixel gray value, I, can be described by the expression

I = gE% + d, (9)

where g is termed the gain, d is the dark reference, and, v, controls the non-linearity of gray
level contrast. It is typically easy to set v = 1.0 producing a linear response, and easy to take
a dark reference image with the lens cap on, then subtracting d out from captured images.
However, we have observed that not only can the gain, g, be variable between identical model
cameras but this can change over time especially for relatively small changes in temperature.
Unless g is calibrated frequently, comparing pixel gray values for identical image irradiances
between a stereo pair of cameras can be difficult.

A widely used assumption about diffuse reflection from materials is that they are Lam-
bertian [17] meaning that light radiance, L, incident through solid angle, dw, at angle of
incidence, v, produces reflected radiance:

L p cosydw

independent of viewing angle. The independence of diffuse reflected radiance with respect to
viewing angle makes it theoretically feasible to associate radiance values with object points
in a stereo pair of images. However, even for ideal Lambertian diffuse reflectance the above
discussion outlines the practical difficulties in achieving an accurate correspondence of pixel
gray values produced from reflected radiance in a stereo pair of cameras.

The physical reality of diffuse reflection makes it even more practically difficult to asso-
ciate diffuse reflected radiance with objest points across a stereo pair of images. A recently
proposed diffuse reflectance model for smooth dielectric surfaces [21], [27], [22] empirically
verified to be more accurate than Lambert’s Law, expresses the dependence of diffuse re-
flected radiance on both angle of incidence, v, and viewer angle, ¢, as

Lol = F(t,n)] cosw[1 — F(ﬂ:rl(?), 1/n)] dw (10)

where the functions, F'(), are the Fresnel reflection coefficients [23], and, n, is the index of
refraction of the dielectric surface, and, p, is the diffuse albedo. Diffuse reflected radiance
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from an object point as seen from the two different viewpoints of a stereo pair of cameras
will almost always not be equal.

Combining equations 8, 9 and 10 gives us an expression which precisely relates pixel gray
value, I, to diffuse reflection as a function of imaging geometry and camera parameters. For

incident radiance L through a small solid angle, dw, at an angle of incidence, 1, the gray
value formed from viewing angle, ¢ (assuming we subtract out the dark reference, d) is:

sing

I= g[(7r/4)(D/i)2cos4aLp[1 — F(y,n)] x cosy X [1 — F(sin™!( ),1/n)] dw V7

For a general incident radiance distribution, L(v,0), (0 is azimuth about the surface
normal) with respect to an object point, integrating over the incident hemisphere, the gray
value will be:

S00) 1) o P

I = g[(x/4)(D/i)?cos* /L(dz,@) p[1—F(,n)] x cosx [1—F(sin™*(

= g [ (n/4)(D/i)*cos’ a [1—F(sin“1(ff—¢), 1/n)]p V7 x [ / L(,8) [1-F(y,n)] cosypdw |7
(11)

Consider this object point first illuminated with an incident radiance distribution, L, (¢, ),

and then illuminated with an incident radiance distribution, Ly(t),#). From equation 11 the

photometric ratio of gray values is:

L [ JL(%,0)[1 — F(¢,n)] costpdw [/

where the terms outside the integral signs in the numerator and the denominator cancel
out. This photometric ratio expresses a well-defined physical constraint determined by an
illumination distribution relative to surface orientation at an object point. It is a function
of only incident light geometry relative to local surface orientation, and is invariant to all
camera parameters (except ), viewing angle, ¢, and diffuse surface albedo, p. Note that
this photometric ratio is local to an object surface point, so that it does not matter if the
incident lighting distribution changes from object point to object point (i.e., which can occur
if lighting elements are close to the object relative to object size). This photometric ratio is
an invariant with respect to each object point.

L[ JL,0)[1 - Fy,n)] cosppdw |V (12)
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2.4 Segmenting Curvature

Gaussian curvature is an intrinsic local shape characteristic of a smooth object surface that is
invariant to orientation of the object in 3-D space and viewpoint. Accurate determination of
the sign of Gaussian curvature at each point on a smooth object surface (i.e., the identification
of hyperbolic, elliptical and parabolic points) can provide very important information for both
recognition of objects in automated vision tasks and manipulation of objects by a robot. We
present a multiple illumination technique that directly identifies elliptical, hyperbolic, and
parabolic points from diffuse reflection from a smooth object surface. This technique is based
upon a photometric invariant involving the behavior of the image intensity gradient under
varying illumination under the assumption of the image irradiance equation. The nature of
this photometric invariant allows direct segmentation of a smooth object surface according
to the sign of Gaussian curvature independent of knowledge of local surface orientation,
independent of diffuse surface albedo, and with only approximate knowledge of the geometry
of multiple incident illumination. In comparison with photometric stereo, this new technique
determines the sign of Gaussian curvature directly from image features without having to
derive local surface orientation, and, does not require calibration of the reflectance map from
an object of known shape of similar material or precise knowledge of all incident illuminations.
We demonstrate how this segmentation technique works under conditions of simulated image
noise, and actual experimental imaging results.

Horn and Sjoberg [26] defined the image irradiance equation which equates image ir-
radiance, I(z,y), to reflected radiance, R(p,q) up to a multiplicative constant involving
camera parameters. Assuming that this constant factor is known and incorporated into the
reflectance map, then

I(z,y) = R(p.q) (13)

which for a known reflectance map allows the derivation of a surface orientation constraint
in terms of gradient variables, p and ¢ from the image irradiance at a pixel. In the case of
the Lambert reflectance map, expression 9, the surface orientation constraint derived from
an image irradiance value is a quadratic expression in p and ¢. Therefore, the quantitative
derivation of surface orientation from such local information is underconstrained to an infinity
of possible orientations along a quadratic curve in gradient space.

As local surface orientation is related to the first order variation of the surface height

‘function, f(z,y), local surface curvature is related to the first order variation of surface ori-

entation (which in turn involves second order variations in the height function). Constraints
on surface curvature can be obtained photometrically by equating the derivatives of the
image irradiance equation 13. Making the following notational simplifications

I,=0I/0x, I,=0I/0y, R,=0R/0p, R,=O0R/0q,
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the following matrix equation is obtained from the chain rule:

( I, ) . ( Op/dx 0q/0x ) ( R, ) (14)
I, ] — \ 0p/dy 0q/By R, )

The matrix in equation 14 is the viewer centered curvature matriz, which is also the Hessian
matrix with respect to the height function, f(z,y). Because the second order differentiation
of f(z,y) by = and by y is commutative, the off-diagonal components of the viewer cen-
tered curvature matrix, dp/dy and dq/dz, are equal. Hence, the viewer centered curvature
matrix is equivalent to the Jacobian of the transformation between image coordinates (z,y)
and gradient coordinates (p, g). When the viewer centered curvature matrix multiplies an in-
finitesimal vector in image coordinates, the resulting vector is the corresponding infinitesimal
vector change in surface orientation represented in gradient coordinates:

dp/dx 9dp/dy dz \ _ [ dp

dq/dx 0Oq/dy dy ] \ dg
The viewer centered curvature matrix therefore relates a change in image coordinates to
the corresponding change in local surface orientation at a smooth surface point. From a
single image the three independent components of the viewer centered curvature matrix

can be constrained by two linear equations, produced from the matrix equation 14, from
measurement of the image intensity gradient.

An object centered curvature matrix can be defined as the matrix which multiplies an in-
finitesimal vector in the tangent plane at a smooth object point to produce the corresponding
vector change in the surface normal. The determinant of this object centered curvature ma-
trix is the Gaussian curvature at a point on a smooth object surface which can be shown
to be a fundamental invariant of the surface with respect to how it is oriented in 3-D space
[28]. When expressed in terms of gradient variables relative to a set of image coordinates,
the Gaussian curvature at a point is given by:

(9p/9x)(8¢/dy) — (9p/By)(8g/dx) (15)
1+p+¢) '
It is very important to note that the sign of the Gaussian curvature is the same as the sign
of the determinant of the viewer centered curvature matrix in equation 14.

We consider the extension of matrix equation 14 incorporating two reflectance maps,
R'(p,q), and R*(p,q):

I} 12\ [ 0p/ox 8q/0x R, R’ (16)
I} 17 )~ \ 9p/dy 9q/dy R, R |~
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Each of the two image intensity gradients is produced at an object point respective to each
of the reflectance maps. Labeling the matrices in equation 16 respectively from left to right
as A, B, and, C so that

A = BC,

we will refer to matrix A as the image intensity gradient matriz, and to matrix C as the
reflectance map gradient matriz. It is clear that

DETERMINANT(A) = DETERMINANT(B) x DETERMINANT(C) .

Therefore, if the determinant of the reflectance map gradient matrix is known for a given
surface orientation, then the sign of the determinant of the viewer centered curvature matrix
(and therefore the sign of the Gaussian curvature) can be derived from the computation
of the determinant of the image intensity gradient matrix. Suppose that two reflectance
maps R'(p,q) and R2%(p,q) are produced from two different incident illuminations. If the
determinant of the reflectance map gradient matrix has the same known sign for all sur-
face orientations p , ¢, then the sign of Gaussian curvature can be determined from the
determinant of the measured intensity image gradient matrix independent of local surface
orientation. So, for example, if the determinant of the reflectance map gradient matrix were
consistently positive for all surface orientations, a positive, negative, zero determinant for the
measured image intensity gradient matrix respectively identifies a(n) elliptical, hyperbolic,
parabolic point.

The determination of the sign of Gaussian curvature from equation 16 has a direct ge-
ometric interpretation in terms of the rotational change of the image intensity gradient
induced by varying illumination. The value of the determinant of the image intensity gra-
dient matrix is equal to the z-component of the cross-product of the two image intensity
gradients as vectors in the x-y image plane. That is:

le Ig 172 172
) = I - I

DETERMINANT ( i
) Yy

1 1 2 72 _
(I I O) X (Ix7ly70) - (070

172 172
L, I — 112,

Y x Y
where "X’ is the vector cross-product operation. Therefore
LIy - LI = ||(;,1,,0)] - I(IZ,1;,0)| sin6 ,

where 6 is the angle between the image intensity gradient vectors. Hence, the sign of the

_determinant of the image intensity gradient matrix is equal to the sign, 8, of the rotational
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change between the image intensity gradient vectors before and after the change in illu-
mination. For a fixed sign of the determinant of the reflectance map gradient matrix in
equation 16, the direction of rotational change of the image intensity gradient at an object
point is determined by the sign of the Gaussian curvature at that point. At parabolic points
the determinant of the viewer centered curvature matrix is zero and therefore there is no

rotational change.

As discussed in the previous section, the Lambert reflectance map (expression 9) provides
a good approximation to the relationship between surface orientation and diffuse reflection
from smooth and mildly rough dielectric surfaces for incident point source illumination di-
rections not too oblique with respect to viewing. Unfortunately the sign of the determinant
of the reflectance map gradient matrix in equation 16 for Lambertian reflectance using any
pair of different incident point source orientations is not the same with respect to all surface
orientations. An easy proof of this is to see that the determinant of the reflectance map
gradient matrix for Lambertian reflectance is zero for surface orientations p, ¢ equal to any
of the two incident point source orientations that are used. If it is known a priori what
restricted range of surface orientations will be examined it may be possible to use two in-
cident point source orientations that will produce a Lambertian reflectance gradient matrix
having determinant the same sign over this range of surface orientations. Our goal however
is to come up with a general technique for finding the sign of Gaussian curvature completely
invariant to all surface orientations.

A sub-class of reflectance maps that results in a reflectance map gradient matrix whose
sign of determinant is invariant to all surface orientations is part of what we term the class of
Ratio-Of-Lambertian reflectance maps. Consider the ratio of Lambertian reflectance maps,
expression 9, for two incident point source orientations ps, ¢s, and, pl, ¢, resulting in:

Lil+pp,+qq J1+Pi+a a7
Li1+pp,+90 1+ (0, + (6))* |
The Ratio-Of-Lambertian reflectance map does not physically exist for a single image of
a diffuse reflecting surface, but rather for the ratio of two images of a Lambertian diffuse
reflecting surface each image taken under a different incident point source illumination. Note
that this reflectance map is invariant to albedo, p. It is also invariant to perspective effects
of the radiometry of image formation, (i.e.,the cos? o effect discussed by Horn and Sjoberg
[26] gets factored out for each pixel). In the case where p, = ¢, = 0, that is one of the
incident illumination directions is parallel to viewing, the Ratio-Of-Lambertian reflectance
map becomes

R(p,q) =

L;
R(p,q) = ]:—'.(1 + pps + qqs)y/ 1+ P2 + ¢ (18)

which is completely linear in gradient variables p and g. As a height function above the p—g¢
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plane the sub-class of reflectance maps represented by expression 18 are ramp functions with
the gradient, (R,, R,), of the ramp equal to a constant scalar multiple of the vector (Dss Gs)-

From expression 10, in actuality the Ratio-Of-Lambertian reflectance map of expres-
sion 18 is multiplied by the ratio

1-F (¢7 n)

1-F(y',n)
where 1 is the angle of incidence with respect to the illumination parallel to viewing, and
1 is the angle of incidence with respect to the other light source. Notice that the viewing
dependence, ¢, completely cancels out. It turns out that the ratio in expression 19 is nearly
constant at 1.0 for all surface orientations within the wide range of 75° relative to viewing.

(19)

Consider taking images of a diffuse reflecting object with respect to incident point source
orientations, (p1,q1), and, (p2,¢z2). Each of these images are then divided by a third im-
age taken for incident illumination parallel to viewing. Utilizing the Ratio-Of-Lambertian
reflectance map, expression 18, the reflectance map gradient matrix is

L 2. 2 L 2, 2
c = (zﬁpl\/1+p1+‘h ﬁpz\/1+P2+Q2>7 (20)

Boyi+pi+d Payl+pi+d

where L,, Lo, and, L3 are the incident radiances of the first, second, and, third point light
sources respectively. Not only is this matrix constant and therefore the sign of its determinant
independent of surface orientation, but there is a nice intuitive relationship between the
rotational change in orientation of incident point light source illumination and the induced
rotational change in image intensity gradient with respect to the ratio images:

LL
(Ls)

A positive rotational component difference between (p1, ¢1) and (p2, g2) makes the reflectance
gradient matrix have positive determinant, inducing a positive rotation in the image intensity
gradient in the ratio image at elliptical points, a negative rotation at hyperbolic points, and
no rotation at parabolic points. In general, for a non-zero rotational component between
incident point source orientations (p1,q1) and (ps,q2), the image intensity gradient in the
ratio images will always have a non-zero rotational change in the same direction as that for
the point sources at elliptical points, a non-zero rotational change retrograde to that for the
point sources at hyperbolic points, and no rotational change at parabolic points. The exact
values for (p1,¢1) and (ps, ¢2) need never be known, only their relative rotational orientation
about the viewing direction. The only computation required are the orientations of image
intensity gradients in the ratio images, which are albedo invariant.

DET(C)

2
2 J1+p+ @1+ +a DET((Z Z; >)-
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If the third light source incident orientation is not parallel to viewing then the sign
of the determinant of the reflectance map gradient matrix using the Ratio-Of-Lambertian
reflectance map will not be invariant for all surface orientations. There is however good
invariance of the sign of the determinant over a wide range of surface orientations if the
third light source is approximately parallel to viewing- a slight deviation from the viewing
direction only effects a very small range of points at occluding contours with no effect at all
on other points. The restriction of having the third light source parallel to viewing is not at
all bad considering that the sign of Gaussian curvature only has a chance to be determined
for surface orientations that are mutually illuminated by all three light sources. It is therefore
preferable to have one of the light sources parallel to viewing since it maximally illuminates
all possible surface orientations that are visible.
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